Question		on	Expected Answers	Μ	Additional Guidance
1					
	а	i	$12/2.0 = 6.0 (\Omega)$	B1	allow 6; do not apply the SF penalty (N.B. applied only once per paper) for any answer where the second SF is 0
		ii	attempt to <u>use</u> resistors in parallel formula 1/R = 8/6 $R = 0.75 (\Omega)$	C1 C1 A1	no mark for just quoting formula ecf (a)(i) allow ¾ (Ω)
		iii	P = V ² /R = $12^{2}/0.75$ or 8VI = 8 x 12 x 2 or I ² R = 16^{2} x 0.75 = 192 W	C1 A1	ecf (a)(ii)
	b		$\rho = RA/I$ = 6.0 x 0.24 x 2.0 x 10 ⁻⁶ /0.9 = 3.2 x 10 ⁻⁶ Ω m	C1 C1 A1 B1	correct rearrangement of formula ecf (a)(i); substitution into a correct formula 2/3 marks for one or more POT errors accept 3.2 Ω µm; 4 x 10 ⁻⁷ scores 2/3
	С	i	(As V is the same) then R must be the same to give <u>same P</u>	B1	accept alternative wording producing same argument, e.g. same I, same V so same R
		ii	0.75/8 = 0.094 (Ω)	B1	ecf (a)(ii)/8; accept 3/32 but NOT 0.09
		iii	for parallel circuit with break in one wire rest still work or series strips very wide (if use material of same resistivity as such low resistance/ giving poor visibility))	B1	any sensible statement
	d	i	14 V	B1	
		ii	e.g. V = 12 V; I = 20 substitution into E = V + Ir, e.g. 14 = 12 + 20 r r = 0.1 Ω	C1 C1 A1	or any suitable pair of readings from graph ecf(d)(i); accept r = gradient; = $(14 - 10)/40$ or similar ; = 0.1 Ω
			I otal question 2	17	

Question		n	Expected Answers	Μ	Additional Guidance
2					
	а		energy per unit area per unit time	B1	accept power per unit area; allow second for unit time
	b		Small <u>changes</u> in R for high light intensities/daylight conditions	B1	accept low R by day, high R by night for 1 mark
			Large <u>changes</u> in R for low light intensities/dim light/night time		NOT comparison e.g. R by day smaller than R at night
			conditions	B1	
			to change circuit state need a significant change in R to be		max 2 marks from 3 marking points
			useful/reliable	B1	
	С	i	2.5 (kΩ)	A1	allow 2.4 to 2.6
		ii	$5.0 = 1 \times 2.5 \text{ k}\Omega$	C1	ecf (c)(i)
			giving I = $2.0 \times 10^{-3} \text{ A}$	A1	accept 2.0 mA
		iii	4.0 = 2.0 x 10 ⁻³ x R or potential divider argument	M1	ecf (c)(ii) or ecf (c)(i)
			giving R = 2.0 x $10^3 \Omega$	A0	accept 2.0 kΩ
	d		R (of LDR) = 1(.0 kΩ)	B1	
			potential divider of 1.0 k Ω and 2.0 k Ω	C1	accept I = 3.0 (mA)
			giving 3.0 V across LDR	A1	so V = 3.0 (mA) x 1.0 (kΩ) = 3.0 V
	е		light shining on the LDR will cause it to switch the illumination off	B1	two suitable qualifying statements for the 2 marks
			causing an ON/OFF oscillation/AW	B1	
			Total question 3	12	

Question		on	Expected Answers	Μ	Additional Guidance
3					
	а	i	When connected/using/AW to the 230 V supply	B1	accept when working normally/AW not 230 V
				5.	(going) through/into lamp/Avv
			the <u>power/energy per second</u> from supply/output/dissipated/AW	B1	accept transferred from electrical (into other)
			IS <u>25 W</u>		form(s) is 25 W
		ii	$25 = 230^2/R$	C1	accept I = 25/230 = 0.11 A
			R = 2100 Ω or 2.1 kΩ	A1	$R = 230/0.11 = 2100 \Omega (2116 \Omega)$
		iii	Using the equation in the form $P = VI$, for larger P need larger I	M1	accept P = V^2/R , for larger P need smaller R so
			so 60 W	A1	larger I; do not allow any argument using 880
					Ω unless this value is calculated here
		iv1	1/R = 1/2100 + 1/880	C1	substitution into formula for Rs in parallel
			R = 620 Ω	A1	ecf (a)(ii)
		iv2	I = 230/620	C1	ecf (a)(iv)1 using 1/R gives 143 kA
			I = 0.37 (A)	A1	accept total P = 85 W so I = 85/230 ;= 0.37 (A)
	b		the resistivity/resistance (of a metal) increases with temperature	B1	ora less when colder
			or R is greater when hot(ter)		
			at 6V/low I little heating effect or at 230 V/high I large heating	A1	QWC mark: explanation linked to observations
			effect		
	С	i	(a unit of) energy equal to 3.6 MJ or 1 kW for 1 h/AW	B1	eg 1000 W for 3600 s or similar
		ii	0.06 x 8 = 0.48 (kWh) or 60 x 8 = 480 (Wh)	C1	no marks for using s instead of h
			0.48 x 21 = 10(.1) p	A1	POT error e.g. 100 or 10000 p
			Total question 2	15	