Question			Expected Answers	M	Additional Guidance
	a	i	$12 / 2.0=6.0(\Omega)$	B1	allow 6; do not apply the SF penalty (N.B. applied only once per paper) for any answer where the second SF is 0
		ii	attempt to use resistors in parallel formula $\begin{aligned} & 1 / R=8 / 6 \\ & R=0.75(\Omega) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	no mark for just quoting formula ecf (a)(i) allow $3 / 4(\Omega)$
		iii	$\begin{aligned} & \mathrm{P}=\mathrm{V}^{2} / \mathrm{R}=12^{2} / 0.75 \text { or } 8 \mathrm{VI}=8 \times 12 \times 2 \text { or } \mathrm{I}^{2} \mathrm{R}=16^{2} \times 0.75 \\ & =192 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	ecf (a)(ii)
	b		$\begin{aligned} & \hline \rho=\mathrm{RA} / \mathrm{I} \\ & =6.0 \times 0.24 \times 2.0 \times 10^{-6} / 0.9 \\ & =3.2 \times 10^{-6} \\ & \Omega \mathrm{~m} \end{aligned}$	$\begin{aligned} & \hline \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \hline \end{aligned}$	correct rearrangement of formula ecf (a)(i); substitution into a correct formula 2/3 marks for one or more POT errors accept $3.2 \Omega \mu \mathrm{~m} ; 4 \times 10^{-7}$ scores $2 / 3$
	c	i	(As V is the same) then R must be the same to give same P	B1	accept alternative wording producing same argument, e.g. same I, same V so same R
		ii	$0.75 / 8=0.094(\Omega)$	B1	ecf (a)(ii)/8; accept $3 / 32$ but NOT 0.09
		iii	for parallel circuit with break in one wire rest still work or series strips very wide (if use material of same resistivity as such low resistance/ giving poor visibility))	B1	any sensible statement
	d	i	14 V	B1	
		ii	$\begin{aligned} & \text { e.g. } V=12 \mathrm{~V} ; \mathrm{I}=20 \\ & \text { substitution into } \mathrm{E}=\mathrm{V}+\mathrm{Ir} \text {, e.g. } 14=12+20 r \\ & r=0.1 \Omega \end{aligned}$	$\begin{aligned} & \hline \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	or any suitable pair of readings from graph ecf(d)(i); accept $r=$ gradient; $=(14-10) / 40$ or similar ; $=0.1 \Omega$
			Total question 2	17	

